Detailed Proof of Two Dimensional Jacobian Conjecture

نویسنده

  • Yucai Su
چکیده

We give a full proof of the two dimensional Jacobian conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of Two Dimensional Jacobian Conjecture 1

We give a full proof of the two dimensional Jacobian conjecture. We also give an algorithm to compute the inverse map of a polynomial map.

متن کامل

Proof of Two Dimensional Jacobian

We give a proof of the two dimensional Jacobian conjecture. We also prove that if (F, G) is a Jacobian pair with deg y F ≥ 1, then F is a monic polynomial of y up to a scalar.

متن کامل

Proof of Two Dimensional

We give a proof of the two dimensional Jacobian conjecture. We also prove that if (F, G) is a Jacobian pair with deg y F ≥ 1, then F is a monic polynomial of y up to a scalar.

متن کامل

Infinite-dimensional Algebraic Varieties and Proof of the Jacobian Conjecture

In this paper we give a detailed proof of the Jacobian Conjecture (posed in 1939) which says that a polynomial map Cn → Cn is invertible if and only if its Jacobian is a non-zero constant. To prove it we equip both the set of all polynomial automorphisms of Cn and the set of all polynomial endomorphisms of Cn whose Jacobians are non-zero constants with structures of ind-varieties. Then using al...

متن کامل

The Jacobian Conjecture Is Stably Equivalent to the Dixmier Conjecture

The paper is devoted to the proof of equivalence of Jacobian and Dixmier conjectures. We show that 2n-dimensional Jacobian conjecture implies Dixmier conjecture for Wn. The proof uses “antiquantization”: positive characteristics and Poisson brackets on the center of Weyl algebra in characteristic p. 2000 Math. Subj. Class. 16S32, 16S80, 14R15.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006